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A THEORY OF THE SHOCKWAVE

PRODUCED BY A POINT EXPLOSION

Hans G. Snay

ABSTRACT: Approximate integrals of the spherical blast
equations with variable 1senti'opic exponents are derived.
The distributions of velocity, density and pressure within
the sphere of disturbance are expressed in polynomiais.
These are used to calculate the "reduced energy" which is
closely related to the relationship between shockwave peak
pressure and distance. For very large dlstances, the well
known asymptotic behavior of weak shockwaves is obtained.
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This report gives a detailed solution of the problem of the
shockwave produced by a point explosion in water. This new
approach can be applied to other media and is generally valid
cver a very wide range. It is the belief of the author

that the methods described represent a considerable advance
in the theoretical treatment of blast phenomena. The work
was done under Task NO 701-267/76001/01040, and contributes to
the solution of Key Problem No. 20, Chapter II, "Key Problems
in Explosives Research and Development, Part II", NAVORD
Report 4299 (SECRET Restricted Data).
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A THEORY OF THE SHOCKWAVE
PRODUCED BY A POINT EXPLOSION

CHAPTER I INTRODUCTION

The theoretical treatment of shockwaves caused by con-
ventional explosions 1s complicated by the presence of two
media: the reaction products of the explosive and the ambient
medium into which the shock is transmitted. Assumption of an
infinitely small "explosive charge" which delivers a finite
energy removes the difficulty of the two-medium problem and
permits study of the shockwave propagation through a homogene-
ous medium, Such an analysis 1s applicable to atomic ex-
plosions or to electric discharges of high energy in small
spark gaps.

Several attempts have been made to attack this problem
[a] -[e]#; the best known 1is Sir Geoffrey Taylor's now classi-
cal treatise "The Formation of a Blast Wave by a Very Intense
Explosion" [a). Recently Lockwood Taylor [b] has shown that
the solution of Taylor's differential equations can be given
in closed form. These theories apply to very high shock pres-
sures only, 1.e., to the initial phase of the blast,

The present paper describes an approach éo the general
problem "ich also holds for lower pressures, Particular con-
sideration was given to underwater explosions, Since the
thermodynamic data for water cannot be expressed in simple
equations, once a large pressure range 1s considered, the cal-
culations were set up for the use of tabulated thermodynamic
data. The methods of calculation which were developed can be
handled with ordinary desk computing machines,

#Such letters refer to the l1list of references at the end of
this report.
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CHAPTER II THE TRANSFORMATION OF THE
HYDRODYNAMIC DIFFERENTIAL EQUATIONS

2.1 The Hydrodynamic Equations. Even for strong energy dis-
charges, radiation effects are unimportant under water, because
the mean free paths of photons and electrons are small in media
of high density. Alsc, it 1s well known that viscosity and
heat conduction do not affect the fluid motion we are consider-
ing here except at shock fronts, There, these effects are im-
plicitly accounted for by the Rankine-Hugoniot shock relations,
Thus, for .egimes behind shock fronts the energy is transmitted
by pressure forces only and each particle has constant entropy
as long as it 1s not traversed by a further shock. This situ-
ation 18 described by the well-known hydrodynamic equations,
For the case of spherical svmmetry, these are:

(2.1) My + Yy + F P, = O
(2.2) Y A M F I, # ﬁ%u - 0,
(203) \Sf * “ \\} - O.

Introducing the 1isentropic exponent
(2.4) NV YR T

(2.2) and (2.3) can be combined as follows:

(2.2a) FlPe # “pr) = 1Ry +mp) - Jlir + 28)

The symbols are defined in the table at the end of this
paper. It should be noted that © designates the excess pressure
above the static pressure 2 ., This convention affects 4 which
18 heore defined somewhat differently from the common 1isentropic
exponent,‘{’ . The latter 1s related to d’ as follows:

2
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*

(2.5) d - (a?jf:g/,' F>s g

At high pressures, there is no difference between these two
magnitudes but forp+0 , y» =, whereas ;% remains finite,
2.2 The Rankine-Hugoniot Conditions. For a shock advancing
into an undisturbed medium, the following conditions must be
observed:

(2'6) ’“:z = 7:’/ "ﬁ:ﬁ‘.—/
P
(2.7) U = «, ,a;ﬁq'p; /
2.8 £; '[o = P "E.e A "Jo' 5
(2.8) < A

(The subscript 1 designates the state Just behind the shock
front; zero refers to the undisturbed state).

2,3 Thermodynamic Data, Equation (2.8) must be evaluated using
the thermodynamic data of the fluid considered., The evaluation
is simplified by the introduction of the "reduced internal
energy"

(2.9) Je Jrp ) = .‘.%_[.;P

which will also be used in other connections in this paper.

J 4is a dimensionless magnitude related to the heat capacity.
(For an ideal gas at high temperature and pressure,J = ¢,/R ,
where ¢, 1s the heat capacity at constant volume and R 1is
the gas constant). The relation between J and d is:

(2.10) r- FEE - (523)
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This relation holds gencrally for any vype of fluid. For
constant heat capacity, the last term vanishes and one obtains
a relation which 1s widely used in the literature.

Once J/g, p) 18 known, one can readily determine the shock
pressure 4, as a function of the density /0, and the magni-
tude

(2.42) = bw(P) =

This is analogoua to the isentropic exponent (2.4) except that
the differential quotient is taken along the Rankine-Hugoniot
adiabatic instead of the isentropic. According to the Rankine-
Hugoniot conditions, //7py vanishes for infinitely high
pressures whereas §/7 remains finite.

2.4 Change from Free Boundary Conditions tc Fixed Boundary
Conditions

Equations (2.1) to (2.35 constitute a free bou.dary problem
since the boundary conditions must be fulfilled along an un-
known line, - namely, the radius-time curve of the sphere
bounded by the shock front. The hydrodynamic equations will
now be transformed in such a way that three partial differential
equations are obtained whose boundary conditions must be ful-
filled at a fixed and known place. This is possible by adding
one more equation, namely a relationship for the position of
the shock front,

The transformation is readily performed by the introduction
of the following reduced variables:

(2.11) Reduced velocity: 54’.—_- 44

(2.12) Reduced density: X = .,.g.
/

Y
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(2.13) Reduced pressure: ¥ = ﬁ—

(2.1%) Reduced distance: 3 =

All magnitudes with the subscript 1 refer to the shock front
and are functions of time only; in particular, we note that
dnjdt = U,

With the use of these variables and the Rankine-Hugoniot

relations (2.6) and (2.7), the hydrodynamic equations take the
form:

)

A Ly (14,9)
(2.15) ;‘.’f - f ﬁ%ﬁ-*y/gﬁz& t

1o . & _;:é:’c‘- f/?lmx/f |
(2.17) 7&:}{ ]/?,;.f'f_) +;27"?7:g/ﬂyt .

We introduce the abbreviations:

r )
@) H - 2 e

.1 L, = /%
R 2 R 1A T8

W
(2.20) G' - 'Q:&t- / - HI )
Lot [ Tru

Rl

(]

Since 2%» 18 known as a function of L, , only A/, remains
to be determined. (This will be done in the next chapter).
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Using G,, we can eliminate the time # from the partial

differential equations and obtain equations with f and A, as
independent variables, where /5 takes the place of ¥ :

¥
(2.21) fe = & _z}/ﬁg'ﬂ + L, + Gp(lnp)

’

’ - £
j Pr=Po f
(2.22) X, = & ZL*?‘ + G (I + A(Axgq)
I3 o _ ¢
£i=Pe 3
(2.23) o o b s r )+ H o+ Gplhylp
¥ ¥ SV gL
P =P

2.5 Boundary Conditions. The trancformation of the partial
differential equations has simplified the boundary conditions.
These are:

-

= |
(2.24) )?: [ for §= /.

At the center of the sphere, ff = 0, the velocity must vanish.
Hence,

(2.25) ¢ =0 for §=o.

Using (2.1), it can be deduced that

(2.26) l}"? = 0 for ?-O)

if X and %? are finite or zero at § = O.

The partial differential equations (2.21) through (2.23)
have some unique properties when combined with the boundary

6
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conditions (2.24), The derivatives with respect to A vanish
at € = 1. This means that the derivatives of ¢, ¥ and ¥ with
respect to § at f = 1 are functions of 9, and H, only,
provided the thermodynamic properties of the medium, expressed
by 4 and h,, , are given, This also holds for the hizher
derivatives. The consequences of this behavior will be dis-

cussed in the next chapter after the® relation fer A, has been
found,

CHAPTER III GROSS PROPSRTIES OF
THE SPHERE OF DISTURBANCE

The shockwave which is emitted from the point explosion 1is
spherically symmetric., We call the region which is enclosed by
the shock front the "sphere of..disturbance".

3.1 Average Density Relation., If we neglect the presence of
the device which discharges the energy, the medium inside the
sphere of disturbance is the same as that outside the sphere,
Since the ambient medium remains undisturbed until the shock

front arrives, the average density within the sphere must be

that of the undisturbed medium, or

/ 7¢
(3.1) Sa [k §4E = p
(o]

This relation is consistent with the hydrodynamic 2quation for
the conservation of mass, It makes a simple statement about
the behavior of ¥ . Similar relations for # and ¥ do not
exist,

3.2 The Energy Integral. In order to derive an expression for
/M, , we consider the total energy of the sphere bounded by the
shock front, As this sphere expands, its energy in excess of
that of the undisturbed medium must remain constant and equal
to the total energy & of the initial discharge.

7
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The total energy increment of the sphere is
/

" . . ” ,
(3.2) Q - 4"’/(‘%"‘ + pE)ridr - "//"é’d’f

where the first term is the sum of the kinetic and internal
energlies inside the sphere and the last term is the total
energy of the undisturbed fluid contained in a sphere of equal
size,

Introducing the dimensionless variables ¢ , 1 , ¥ and the
magnitude J , (2.9), we obtain

(3.3) Q= %_rr u [Jf()af t Lyt
£ (p - 3 /Xf“f)]

The last term vanishes due to (3.1). The first integral is
abbreviated, using (2. 6), by

(3.4) - J//w 2l y)sds, T Tp,pp)

This magnitude represents the reduced energy of the sphere of
disturbance. The total energy 1is

(3-5) Q - 4 r,elb, ‘&:‘& 7.(/0c)

3 <.

Equation (3.5) provides a convenient relationship between the
shock pressure and the distance /7, for any given energy yleld
&) . Hence, the primary task is to find 7, as a function of

pr -
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Setting % = 0, Wwe obtain after rearrangement

(3.6) I+ fou [ B0 + 252 ]

-3 P
L. =L

/ + jﬁﬁ,7ffa.[7 + 3]

where /3 " by,
Al Lo
(3.6) together with (3.4) gives the desired relationship be-

tween .4, and 4,. The solution of our problem must satisfy
the three partial differential equations (2.21) through (2.23)
as well as the integro-differential equations (3.6) and (3.4).

It i1s now possible to see the significance of the trans-
formation (2.15) to (2.17). We assume that 2 and Pww 8TE
known, As shown in the previous chapter, the first and
higher derivatives of ¢, y andy with respect to % . at
_? = 1, functions of p and g only., If ¢, f and p were
analytic functions, they could be expanded around.f’- l, in
series. Introducing these into the integral for 4 , (3.4),
and using (3.6), we obtein an ordinary, first order differ-
ential ejuation for 49, . Thus, our transformation and the
expansion around.f = 1 reduces our problem to one ordinary
differential equation. Once 2/p,), or,@é@), is known, the
problem is solved.

In this paper we will not discuss whether or not this
tyve of solution is possible. For practical calculations,
expansions of thieg kind are usually very inconvenient if a
large number of terms 1s involved., However, there remains
the highly significant point that the behavior of our three
reduced variables near ¥ = 1 gives the greatest contribution

S 2 T -.3}g%§i

9
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to » , (due to the factor 3’2 which occurs under the integral)
and that this behavior can be calculated without solving the
partial differential equations,

Closely related to A4, 1is a magnitude of great practical
interest in any shockwave problem, namely, the inclination of
the pressure-distance curve in a logarithmic 4 -/ plot:

(3.7) %" 27" %ﬁ é‘f // 14&#~(MA}

This shows that for //ﬁ‘/ = 0, the peak pressure is inversely
proportional to the third power of the distance, This holds
for very high pressures, For large distances 4~ and low
pressures, the wave assumes a nearly acoustic behavior and
db~p, Joh¢ approaches unity, as will be shown in Chapter VII,
For a finite 4, and negative § , the pressure may decrease
even more rapidly than with the cube of the distance.

3.3 The Dissipated Energy. At the shock front mechanical
energy is constantly dissipated and converted into irreversi-
ble energy. According to the second law of thermodynamics,
the increase of dissipated energy 1s

)
AQpiss 4vrf;jo°.//p7'1f5h/als
(3.8) ¥, st

- érf‘ 2/006

7'?'5 ) is the lowest permanent temperature which can occur in
the system, For liquids, this temperature corresponds closely
19 that which the fluid attains after passage of the shock-
wave and return to ZzZero ex:ess pressure.

The integral in (3.8) is commonly called the dissipated
enthalpy increment A ., If the isentropic p-0 relationship is
known, h can be conveniently determined from the difference
of the enthalpy increments at the shock f'ront, AH , and that

10
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of an isentropic expansion to zero excess pressure:

'
(3.9) h = OH 'f}?%‘&?;
AH -« B (h + £ ).

This relation shows that h is a shock parameter like ! or
A¢,, and, therefore, is a function of 4 only. Behind shock
fronts, h is constant along any isentropic line.

The amount of dissipated energy which is within the sphere
of disturbance can be found by integrating (3.8) along the
shock front. Introducing %p,, defined by

J _ |
(3.10) QD:’;; - ?5 P ‘%;'ﬁ'Zbiu ’

the following expression is found:

4
2ahlp) -
(3-11) ,de««é! __3 ] - 7):3; ﬁl (ﬂ"fc)
7, - =4 { (oY ‘. '
oLl 7, J + ﬁﬁ[ﬂéﬁ. - e Z;'g.t]
This and (3.7) establish a relationship between # and /., .
Either one of these equations can be used to determine 4.
It is convenient to use 4 for high values of @, , whereas,

(3.11) will be used for the case where S, approaches 0, , 1.e.
for very low shock wave pressures,

CHAPTER IV THREE IMPLICIT INTEGRALS

In this chapter we will derive implicit integrals of the
three partial differential equations (2.21) through (2.23).
These integrals contain derivatives with respect to A, and
are therefore not complete solutions of our problem, But they
give the initial distribution of our solution and provide an
understanding of the behavior of the general solution,

11
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Further, they can be used for iterations to improve approximate
solutions,

4.1 Integral Obtained From Energy Considerations. Consider a
sphere lying concentrically within the sphere of disturbance,

The inner sphere does the
t

2
work = 417‘//?”*8J’ e ok

Z,
on the surrounding medium while it expands, It contains the

energy = 97 //'%l # bp)ridr,

In these relations, /’ denotes the radius of the inner sphere.
According to the assumption made in paragraph 2.1, the change
of energy of the sphere 1s equal to the rate of mechanical

work done on the surrgunding medium:
r

¢ 2
(4.1a) - ﬁlz_ /ﬁz_ﬁt’*_[:/o},-‘d, - F (pr&)u

or, since dr'jolt =

(4.1b) /3;[[%4 " p(f-f;)jrj dr + f’it/é‘_“.f/o{['ﬁ)s*pd.’}: 0.

In (4.1b) E has been replaced by £-& since, by virtue of

(2.2)
(% + Ap=) -0

rt

The partial derivative in the integral of (4.1b) refers to
constant r ., If we change to the variable f, we must note that

&) - @, - #10)
N @{]3 - %;é‘;f(f?t

12
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Introduction of g?e reduced variab es ylelds
2 9 .L ‘J 2 2 Q
47',372‘/(’5?[%&5[*" * z:—%”’]ff/j df 7
(- .

Selxet+ pia[ae +§} Faa et e v 2
Introducing further
2
(x.3) g %) - J/w + s T¥)S Ay

and making use of (2.19), (2.20) and (3.6), we obtain:

(4.2)

first term of (4.2) = % 3‘-% + \‘32'7‘:7 %[Mﬂfﬂ.ﬁjf

4,4 = 9L
(4.4) —}[G,mi-’+ 2L, + 6, + 34|
= 4 ey by,
-é—(B,[ dlwp, " ad&n/,]'
Rearrangement of (4.2) and (4.4) gives finally
(4.5 _ 72 - Y%
X 2

In this equation the prime 1s omitted on § since it now repre-
sents the independent variable,

4,2 Integral for the Reduced Velocity. By combination of (2.21)

and (2.23) we obtain

(4.6) gﬁ[ﬁ-— ?L _.f_gx_;,a_‘-’;, - /% f

= L, +G e, ¥ "'[:’;.f.sﬂ.*é."“,].

Tlp” Fox 2 £
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From (4.5),

¥ 7"?‘ _ Y/t

- - e R e . g oy —a -—

(5.7) Fxe 7‘%—,‘ - Y 2T 1) Y
= — )
where we have used the following abbreviations:
y = /%
(4.8) g = elrer)
? - Fz.%o J. - r‘

"P'P'

- A’o QA,
- td:% ,

Furthermore, we abbreviate

L = Ln + G'.g%,%,
(k.9) H = H + 6 5%

6 = G * 6555

(4.6) then takes the form:

(4.10)

Integration gives:

M=

-gj%f[(g+)‘)gz—(,u3+9)7 +/“7]
= (+g)gt +(H + gL 39y - (A,

($+a)3° - (Mp+9)y + mg

4, A 2.
(h.11) /“\(f (3)'+3)’ + (H +9l- a,u-y)’

o 4 Const,
~L-m)q 7

If the coefficients of 7 in (4.11) are constants, the integral

can be expressed in closed form:

18
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2
Ko& + KtJa + kl "J'
st A v ¢ e o Rl G 2 o

(4.12) 2
KGJ), + Kn‘:_ + /\/z 4’4; - 42 Ka L. ¥
+ 6;(‘;"8.) ’&"(/ "’Jt/* TP X4

where
kK, = - (gfl)/ﬂr*g)
(4.13) K, = (ug +9)/P4+3)
K, = M7 /(3y+9)

and where 5., &lare ithe roots of the quadratic equation in the
denominator of the integrand.

4,3 An Integral Involving the Reduced Density and Pressure.

From the differential equations (2.22) and (2.23) one obtains,
using the abbreviation (4.9),

) Sp , 2
(4.14) 2%&.1_5 "AX?‘?-+ FrF tHG

Integration yields

2 -9 ¥

It 1a interesting to note that both integrals remain finite for
all values of f from zero to unity,

For /%4 = O and constant 4 the expressions (4.5), {4,12)
and (4.15) correspond to the Lockwood Taylor solutions of the
strong point blast wave [b].

,' /
7 3 - I+ H- 39
(5.15) X" - )ff'} -fﬁ/,—.ﬁ)u/-/hl,d/,t ,5'5' Af
¥ f

15
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CHAPTER V
THE TAYLOR CASE

5.1 The Initial Distribution of the General Solution, G. I,
Taylor has described a special case which applies to the early
phase where the shock pressure is very high (a]. Corresponding
solutions of the hydrodynamic equations are called “progressive
waves" by Courant and Friedrichs(f]. The essential feature of
this solution is that the velocity, pressure and density distri-
butions inside the sphere do not thange shape as the shockwave
advances; only the scale changes, In our coordinates, this
means that the 9’-3, x-—j and V—}—curvea remain the same; they do
not change with time nor with A which replaces time in cur
analysis,

A glance at equat .ons (2.21) to (2.23) shows immediately
that this can be true only if R 1s constant. Constancy of g
is also required in Taylor's treatment and is Justified for high
pressures where, according to the Rankine-Hugoniot conditions,
#, becomes independent of o, 1.e., ’/7an = O, This reduces the
partial differential equations to ordinary differential e-
quations,

Since ‘/gaw = O for infinitely high pressure, the Taylor
solution provides the initial distribution from which the
general solution of the partial ditfferentiasl equations develops.
Thus, we assume that we have Taylor distributions from the very
beginning and that these remain stationary as long as ,O, does
not change.

(Actual explosions do not have such distributions from the
very beginning. However, it 1s safe to assume that the distri-
butions ef pressure, velocity and density will quickly converge
to the Taylor distributions or the subsequent distributions
calculated on the basis of an initial Taylor solution.,)

16
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5.2 The Taylor Solution., For a true point explosion both the
pressure and the temperature are infinitely high initially,
whereas the density is finite, Under such circumstances the
medium will be completely ionized, i.e., all the atoms of the
medium will be completely stripped of their orbital electrons.
Even at relatively high densities such a medium behaves like an
ideal monatomic gas. Effects not present in the ideal gas theo-
ry are those associated with the electrostatic forces between
atoms and the radiation pressure, We neglect both of these in
this analysis, Thend 1is constant throughout the sphere and
equal to 5/3, the value for an i1deal monatomic gas, Further-
more, we have the following well known relations which hold for
ideal gases with constant heat capacities:

# - &
s P

‘ = ﬁ___."‘e’ - /. +
(5.1) 4 f— /e

N

[ - ¥ _{
- &
= 2 "fa
J T 2

With{ = 5/3, we have o, = 4/, « This is the highest value of
P, which can occur in our problem, For the Taylor case, we

have
Iy <= O
_ -
(5.2) " por
5. 6 - o
, - %
ro =9

The integral {(4.5) becomes:

17
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(503) X?Z - ,?/'? - P’l;l,—p.

The equation for the reduced velocity i1s also simplified since
the coefficients ofy'in (4.11) are constants, With

(5.4) 9"%5'1'/’7’5&’

and 9 = P'/Po )

we obtain from (4.13),
K= -
© Pt Xpo

(5.5)
K, = _2f_ L _p

P+ LPe I 4 P, =fle

K, = -a%5,F #.

(5.6) P tPs A
S, = £ 305 -
If we examine (2.23) at 3 = 0, we find, since %f vanishes,
(5.7) % . -H . 4
(5?‘):0 34 J#‘?’ - 4,

We will frequently deal with this magnitude and use the
abbreviation

(5.8) e = 4o

The equation for the reduced velocity then becomes:

18
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- - & 2¢ - o < £
A§ = n b IEG LR L
, P = ze. — /_t?-_. *,z -/
‘ ‘ (5.9) 77 7 2 .
L, -Sp B - Em r FP
z 3/0, o Po

Finally, we obtain, from (4,15), the simple expression
¢/ A A
(5.10) X' = ys’[ 8 F P 9]

Combination of (5.3) and (5.10) permits the computation of
% and x , once sﬂ/f has been found from (5.9). All three
functions are equal to unity for € = 1. # and ¥ vanish at

}' = 0, whereas}b remains finite. It i1s of interest to study
the behavior of these three functions at = 0,

From (5.9), it can be deduced that

L
“ (5.11) Lo [A[f—c.)] - b CE7
g-» 0 I
where
. - [} ‘_Z‘ —z‘
Co :_’_‘{f- ’C J’,'
(5.12) G, = (7- (,/[ s o
Hence, we see that, for f- 0O in the Taylor case, the behavior
of ¢ 1s
f (7 +3)
. ' C
(5.13) = Gf v &F 7.
or, for/ = 5/3,
78
(5.13a) g = 29F r 225§ + .

| 19
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Combining (5.3) and (5.10), we obtain for the reduced pressure
¥,

L Y = % 2 £ -5
(5.1“) ‘?-00 ’(/(. ] f ﬁ_AC ,
- P?;)'. —

This shows that #, is finite. (% =0.3060 for & = 5/3).
Putting (5.13) intco (2.23), we obtain for small values or? :

(5 +7)
(5.15) y = Ao 7+ A,}’ 7 o
where 3
VA =l
(5.16) A.- = Ao 5 T |

Hence, for } = 5/3, we have near §=0,

J/g f
+< 03/
(5.17) g - 03060 &5
For the reduced density, we obtain directly from (4.15):
3_
-/
(5.18) L f = 3.}’7 * .
g-»o
wa ;1—,
with TP LA -
3 = A [ o L .]
(5.19) - 0.74258 for p= 95

5.3 The Primakov Jase, For /= 7, the Taylor solution takes
on an intereating form, first found by Primakov [g]. In this
case, f, =x o and (o =1, (, , A, A, and 5, vanish, The
solution of (2.21) to (2.23) 1s

p- f
(5-20) x-¥ A7
yp - §°

20
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Of course, this solution fulfills the average density con-
dition (3.1). The Primakov case is often mentioned in con-
nection with point explosions under water, because an
isentropic pressure-density relationship using the exponent 7
gives a good representation of the behavior of water. This,
however, holds for moderately high pressures only. This is
evident if we consider the highest density, which 1s 1.333 4,
in the Primakov case but &4 Po for a completely dissociated and
ionized medium,

CHAPTER VI METHOD OF
ATTACK FOR THE GENERAL CASE

6.1 The Determination of #;, In order to perform calculations
using the transformed differential eqguations (2.21) to (2.23),
1t 18 necessary that H, be known as a function of 4, .

The proposed method assumes, as an initial step, several
arbitrary values for %I%ll ’ or/3 , Such as 1, 0, -1, =2,
Then #, R L, and &, can be computed as functions of p, , 8ince
Ji,”(p,) is known, Next, ¥ ,X and # must be determined from
the partial differential equations by one of the methods
described below. Subsequently/, is calculated using (3.4).
When /, 18 plotted versus(4 — A)/f» in logarithmic scale, the
inclination of the derived /, curve must coincide with the
value of,d which was used to calculate this particular curve,
Such a curve is readily drawn in the same way as is the
graphical solution of differential equations by the method of
isoclines, Figure 1 1llustrates the procedure, Usually, the
first step gives satisfactory accuracy. The procedure can be
repeated assuming more closely spaced values of ﬁ ,» until the
desired accuracy is obtained,

This method is practical only 1f / can be determined from
computations which are not too cumbersome, This is a formi-
dable task, if exact solutions are desired, especially for
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variable > and J . However, it is possible to devise approxi-
mations which simplify the computations considersbly without
too great loas of accuracy.

6.2 Differential Quotients forJ = 1. The reduced functions
¢ , X and §y have the value one at f = 1. Hence, the deri-
vations with respect to o, vanish in (2.21) to (2.23), and we
obtain the following simple relations:

(6.1) g’ _ ) o (& + H + L, ’
(6.2) X - ('?%), _ ﬁ,—;;&(z’u + G )
(6.3)

Voo BB - LA [amey s

The second derivatives are:

A @ﬁ) = [*Mfe'-') * zn 4(-1)
+ (4, - 7?-_%)//4-1,’- %'~ ¢ Lz 4 2.5 )

+ 4 (:ﬁz.ﬂ o 92/‘4rﬁ, Xj(#+2)

ay’ ady’
+ G b, * Al p, )

(6.5) X"_ {79}{{_), = ﬁ;u?‘ [g'-f— 2v-1) + X8 + G,%);

’

W' () = s [nin e n-4) vty 8

+[2’,#H,—1)”'- H, + G,j——ﬁ;; + @f}{g’; ) .
22
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These and the higher order derivatives are completely determined

as functiong of B , once /4, or/Q and the thermodynamic data of
the medium are given. The case /'~ R//4-A)must be excluded.

This situation is approached ror/q-./a and is discussed later

in Chapter VII. f

6.3 The Behavior Near the Center of the Disturbance. The f

Taylor solution shows that the density is zero at the center

of the explosion but the pressure is finite. If we consider
(2.9a) for the center («w = 0), we have

(6.7) @8 - ¢ #

For a conetantg'r-/, , this becomes the familiar isentropic

A
(6.8) Dt

o= cp

TRt N

PN )

The isentropic constants, C and C‘c are infiaitely large at the
center. This is a consequence of the assumption of a point
explosion, where at the beginning the pressure and temperature
are infinitely high; 1t holds not only for the Taylor solution
but also for the subsequent stages. Therefore, the density
remains zero and the temperature infinitely high at the center
as long as the basic assumptions of our calculations, in par-
ticular the absence of radiative energy ¢ransport, are valid.
These are clearly not fulfilled at the center since high
temperature and low density necessarily mean strong radiation.
For underwater explosions, this inconsistency with the physicsz.
picture 1is restricted to the almost empty spaces adjoining the
center. At some distance from the center, radiation effects
will become small because of the increased density. Actually,
the hot center will cool down very rapidly due to radiation,
equalizing the temperature in the core. This temperature may
be too low for appreciable radiation to the surrounding medium,
but still high enough to cause dissocistion. This may indicate

23
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that our basic equations are acceptable approximations and that
d, = 5/3. This 1s the same value as for the initial distri-
bution; thus, near the center 4 is constant with £ or with
time.

From (4.15) 1t can be conclude” that

(6.9) ff‘:?’y = Bp)f

with 7 4
(6.10) mo= o= A5

Inserting (6.9) 1into the partial differential equations (2.21)
to (2.23) one finds that the same expansions as in the Taylor
case, (5.13) and (5.15), satisfy these equations near ¢ = O,
namely

- 2m s S
(6.11) (’ - c.ff + C;fm 7 ‘/'C;S *J'
eme
(6.12) x = &t +3§ ...
2+ 4
(6.13) y = A+ A% e + A% ++,..

This expansion breaks down if A, becomes zero as illustrated
by the Primakov case. Therefore, it is of interest to examine
the conditions for which A, may vanish. We set

r”
(6.1%) 3_‘.0 y = Af , n>o.
Then, according to (4.15)

L y = 3'3%

(6-15) fa»O
Putting this :nto (2.21),
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-2
.A? +ll¥ *%ffvﬂ,

(6.16) % 1""'

.-/.

shows that for/, < 2, A, = 0 can only occur if we permit a

singularity in L at the center. This may occur when stending
waves within the sphere are reflected at the center but can be
excluded for any other condition. Thus the expansions (6.11)

to (6.13) hold ford, <2.
The coefficients A4 ,B ,C 1in (6.11) to (6.14) are functions

of g, and are determined by ordinary first order differential
equations. The first four of these are:

(6.17) 36 + H + G dhe _ o
b p,

(6.18) (M*ZJA'[Z%‘T- -.C,] - /.[m*é’}f,Ao-G,A.d—i—i,f =0

(4

(6.19) m&_‘.%;‘-c,) -3, -6 -6, &Zd _ ,

(6'20) £¢ "¢ 2 y
/a’__/o. -cof. A, + L,~ "(, -+ G,%

These are four equations in five unknowns, namely 4, A, &, ,
¢ , C, . Adding one more differential equation always brings
Hence, this expansion around ¥ = O remains

in one more unknown.
An additional ex-

undetermined, as it was in the Taylor case.
pression which relates the expansion around f = 0 with the

complete solutions, is reguired.
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Several such expressions csn be set up. The most con-
venient one, equation (6.25), will be discussed in the next
paragraph. Another interesting relationship can be found by
combination of (6.17) and (6.19) and by integration from the
initial density /D,, to/O, :

(6.21) Adp) L pp o agpo [ Bp
A. (p,) o =/Pe zr,o,) 1 3-//%/

This integral requires the knowledge of %, and, therefore, is
less convenient to use than equation (6.25).

6.4 Polynomials for the Reduced Velocity, Density and
Pressure. Since the behavior of the solutions near £ = 1 and

s

$ = 0 1s known, one may construct approximate distributions
for ¥, X and{ by merging these solutions in the intermediate
range. One of the simpleast ways to do this is to use poly-
nomials in j’ » With exponents in terms of #7, which satisfy
the partial differential equation near } = 0, The coefficients
are determined in such a way that the polynomials satisfy the
boundary conditions and have, up to a certain order, the correct
behavior near ¥ = 1 and § = O,

If only first order terms are used, we have four-term
polynomials for y and ¥ and a three-term polynomial for ¢ :

22 C. 1+ i(me2)
(6.22) ? = =, of

J my A(Mmr)
(6.23) X = £ &F

i(me2)

-
!
>

(6.24)
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There are eleven coefficients to be determined for which we
have the following conditions:

¢ =1
(a) Three boundary conditions at 3 =1 4X =1
¥, =1
p  (6.1)
(b) Three differential quotients at? -] A/ (6.2)
%’ (6.3)
(¢)

The average density condition (3.1)
(d) Three ordinary differential equations involving 4, , 8, ,
¢ ,B,: (6.17), (6.19), (6.20)
(e) One expression which relates the expansion around }' w O
to the entire solution, preferably a ccndition for A,.

The last condition (e) can be found from (2.21).

Solving
for y? yielde

(6.25) Loty = PHXE — P-Peltpt X ~ (P-pILivX —(P-p)xGpe,

The integration from ? =0 tof = 1 can be readily performed

with the use of the polynomials (6.22) to (6.24%).
With

K B.
(6.26) . = nded
fi = &

we obtain

Bow Ao = 1= Glf, =28, +f,) - (14-9) L 44,

(6.27) + B[ BC(Be- ) - (14-4WBs- 28 ) + 138 }

+ ej-g.{c,‘p, +E5CCH, + [zsc,z*/:c.c,)/av,

FUS GG+ 15Gf ] + LAG [.iéz_(p ~23p,48,) - _&_é;j

I
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(6.27) 1s an ordinary differential equation for (o as a function
of A . Therefore, we have three simultaneous ordinary differ-
ential equations for

A, - - - - (6.17)

B, - - - - (6.19)

Co - s =" (6-27)
and one algebraic equation for A,, namely the combination of
(6.20) and (6.27). The rest of the coefficients are then
determined by

(6.28) A, = 3-3A. -24, - K

(6.29) A, = 1~ A -A -4
(6.30) B, = -568.+ 3958 _ 73720 + 2%5E),
(6.31) B, = &28, - ;‘%’ié + 184379 - o.4851)/
Sy’
- -J&B + 058 — 100651 v 23195),
(6.32) l% o T =a
?1
(6.33) ¢, = & -6 -%
(6'31‘) CL = "' Co - C'

The accuracy of these polynomials was tested for the Taylor
case where the exact solution is known. The result was very
encouraging; for instance, § was given accurately by the
approximation (6.27) up to the fourth decimal place. This does
not necessarily mean that this approximation will be equally
good for the general case, but it shows that this treatment
gives a first order approximation which can later be improved
by 1teration.
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6.5 Iteration for Improving the Approximate Solutions. The
transformation of the hydrodynamic equations (2.21) to (2.23)
gives the solution in a form which 1s relatively insensitive
to one of the independent varisbles, namelys, . This suggests
the use of the implicit integrals (4.8), (4.11) and (4.15) for
iterations. Once good approximations for ¥, X and ¥ are known,
these approximations can be improved by calculating approximate
J(¢) ana [(§) for (4.8) and 9,9 ,L andH for (4.10) and (4.11).
Solving these for ¢, ¥ and ¢ would yield improved approximations.
J. F. Butler, NOL, has derived other integrals which can
be used for iterations and which need only X for the initial
approximate solution. These may be useful because the average
density conditions together with the derivatives A’ , X, .....
lead to good approximations of X without much numerical effort.
Solving (2.22) for ¢ and integrating from §= 1 to § gives

p = XJ,z[lf = (xy-r}+{_.e_ +6)/fd'§

§
U @ oS
The reduced pressure can be obtained from (2.21)

(6.36) 7 = X¢ B [§- 6o -§) - L - 6,358

Numerical integration of this equation ylelds 7(3, P.) . Using
the results obtained for # and ¥, (2.23) can be used to
improve ¥ by integrating the following relation:

(6.37) ¥ - S AL T Lo -5

From here on (4.5) and (6.26) can be used to improve the
functions ¥ and X further.

(6.35)
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CHAPTER VII THE LOW PRESSURE RANGE

When p, /p, approaches unity it becomes more and more
difficult to evaluate the integral /, because J, increases
rapidly with decreasing o, and f . For values of A /p, close
to unity, it i1s possible to derive an asymptotic relationship
which is useful in solving the problem in the range of low
pressures. The first step in doing this is to obtain simple
expressions for the thermodynamic data of water which permit a
representation of the equation for 4, in closed form.

7.1 Thermodynamic Data for Water at Low Pressures. For low
amplitudes, the Hugoniot adiabatic coincides with the isen-
tropic; therefore,

(7.1) i fry =

A~ Pe
If the sound velocity changes linearily with pressure,
(7.2) C= Coll+ €Ep)

the following relations can be derived:

(7.3) P-fo _ /
o - /ﬁ%? /+ EP
(7.%) Jﬁiﬁ- = /+ €EP
(7.5) § 2L = /+ (¢ +,5f;.;}/:

Po

Strictly speaking, € refers to the change of the sound ve-
locity with pressure along an isentropic. For low pressures,
however, it is permissible to use values of € which are
obtained by measuring sound velocities as functions of pressure
at constant temperature, namely € = 0.108., This holds for
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sea water as well as fresh water at all temperatures of
interest. Por low pressures (7.3) to (7.5) yield the follow-
ing first-order approximations:

.6 Y ! L A _@__':fc = /+q
(7.6) ,z.:; Vo ﬁﬁ.f ﬁ_’/.a; > + ax
(7.7) Y ﬁ—-ﬁ - /I+ QX

P;"Po l‘ P° t
where X = (P' "/ooj//ao

2 ( for fresh water at 20° C
= K -
. “Peto 2.376 1for sea water at 8° ¢

and Q = [/ +a,

Using these approximations, we obtain from (3.9) for the
dissipated enthalpy increment

: a 2
(7.8) ;f%;;; Pl = '257/% X
7.2 Behavior of the Shockwave Peak Pressure. As the sphere of
disturbance increases in size the shockwave peak pressure
decreases and the wave finally behaves nearly like an acoustic
wave, It is well known that weak shockwaves never attain an
exactly acoustic behavior as far as the pressure decay with
distance is concerned i.e., the pressure does not exactly
decrease inversely proportional to distance. For instance,
Kirkwood and Bethe have found the asymptotic behavior of weak
shockwaves to be as follows

| A
(7.9) ﬁz = 7;9'(/5“.!;/,.)?

/, = reference length, ¢ = constant

This gives

31

— RS T N S, |

e T T

———— TR Fe - -

AER T a B _ARTEIEEL W W AN W




NAVORD Report 4182

(7.10) f_’:’o -‘i—f“"“ = -1+ % 5%

Our expression for %’ » (3.7) becomes with (7.6),

M’ td“v ' -3
(7.11) #, =0 ﬂ:ﬁ - 2+ —xal/+p)

= -(/ + i‘-,':ﬁ + d;*a_dt_é!....)

where

8 = Aoy | ey
comparison of these two equations shows that, for low pressures,
/S must slowly (logarithmically) approach unity. This means
that 7, tends to zero, when 4, approaches Lo«
7.3 Expressions for S’,', X/ and 1}' at Low Pressures. Using

(7.6) and (7.7), we obtain the following limiting equations for
H, /]‘ and L, :

-3
Lo H - Lo | L
(7.12) P +>ps ,o.-op.{ / ﬁ%’- /+ "2177, (/+,3)}

e
I p.

\

3 /- @ X
- 2+B8-ax(itp)

.3 - XX
= -ga(! ~743 J
(7.13) b L, = H [(1-82x)

P. =P (1~ %

Introduction of these expressions into the equation for Z"
yields
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G ! = b 1o 2 ,‘_1&*;#’,}
/ - -, ~ - /ao J
A “’fo ',3, ‘ 100 [ J; /o’ _,"5" -
(7.14) ,
a, - X '

....-.v

2 /1= _ & g (P *
= &G X 7+43 Q, 2+ﬁ 7¢8 7 9

Correspondingly, we obtain for Z/

,&o-vvy . ,, {‘P AL/+H~3£
/ Dd’p‘

A, > fe
(7.15) 2 5 A/
. ] 2. X V + / - l';!p
( + ¢ )/ 2+/§*Q,X
. =8 _ 3plA
= ”?:’:\;: ?; > 2 -+ 42*_4 7_;73——"
_ Lo’
- A*A v 2+3 T

for the derivative of the reduced density, we find

: g e , - l
(7.16) //"‘”, o, X s, LBy + 2 G|

7.4 The Shockwave Energy and its Relation to the Total Energy.

When the shockwave has propagated to large distances, the
energy distribution within the sphere of disturbance may be
visualized as follows: The core of the sphere is still very
hot. Although pressure and density are low, the region near
the center has a substantial amount of internal energy. In
the case of underwater explosions this energy is associated
with the pulsations of the bubble. Near the surface of the
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sphere, i.e., near the shock front, one finds the kinetic and
potential energy of the shockwave as well as an increment
of internal energy which stems from the energy dissipation
at the shockfront. Thus, we may distinguish three energy terms:
bubble energy, shockwave energy and dissipated energy. In the
following, we deal with the shockwave energy.

The potential energy (reversible internal energy) of the
shockwave is

V4

(7.17) V - 4»/(;_;/0 - bp, ) ridr
where [ 4
= - P ccgn'f' dV + Eo
(7.18) £, / (1) §= comst
| A

For low pressures,

pA . prRy,_,.
(7.19) ’._’ole E} £ 2B (i

If we introduce this expression into the integral (7.18) saver-
terms cancel because of the average density relation (3.i).

The terms left are
/

Lo V = 4;",7 LA €d
ey o:aﬁ 7> S
(7.20) = 47r£ P | R-
= t L=p L5 Y
//;V ) \ T

= 497/’.29 J/';b \f'aij{
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where (7.3) has been used. |
Defining a reduced shockwave energy /s in an exactly analo-
gous way to /4, , (3.5) and N oiss » (3.10), namely:

- T TS S

s :
(7.21) 76 - .‘%Z' ’:a/’-’, £J_£". o n
‘6/’. '
we obtain , y !
2, 2
(7.22) Mo 9y = 3/4’21f"f * J/f*f"‘f
ﬁ —b/o X

(]

In this expression, functions for 4, ¥ and % must be used
which refer to the shockwave. Suitable functions applicable
to the low pressure range are

”"
=5 A |
$3 /
(7023) X -— f” ”Z -,-XI ig
S ./ .
y =5 7 = ¥ -
This ylelds
. J A
(7.24) ;‘6:70 I)s = He = i © A3

or, for very low pressures, neglecting 3 and [, '1n comparison
with2g’ and 2p/:

— J 24

(7.25) lso = ‘;L = 7 X T#g
It is interesting to note that this result can be also obtained
from oo

2
(7.26) Qs ~ 97/ /f e oZ

t=&
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by assuming »}-‘(t)/p, and Kt/t//,:t, are exponential functions,
which is a fairly good approximation for sny shockwave when
used in (7.26).

Equation (7.25) 1s ueeful only if an inter-relationship

between
B = S
and %
fio = .;’-éf;*\/a’

is found. For this purpose, we study the change of shockwave
energy with the distance », . At the shock front, mechanical
energy is dissipated due to the irreversible processes associ-
ated with the discontinucus rise of pressure, velocity and
density, as discussed in Chapter III.

Hence
Y, (o - - Q/@’/‘; - /¥ a4 ‘/o, /7
(7.27) r, .7,

Comparison with (3.11), shows immediately that

Z,ngﬁ A
(7.28) dbwp, _ _3 17 2= Z
b, / # ﬁ*ﬁ.(ﬂﬁd

Combination of (7.26) and (3.7) yields, after rearrangement,

A ld
(7.29) g - A Lt A, (1137
X
' T g, #F5)

or for very small values of x

, - <hpy 2tB  _ Qy2+f
(7.30) Jso o T 3x/&°_/3

[ ] 4
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Combination with (7.25) gives the following differential
equation for %, :

= Ja,x /3 + Lso
(7.31) fo = S —e—

The solution of (7.31) 1is

(7.32) P30 = LaX [Fht - Arc ]

C is the integration constant.
Introduction of (7.32) into (7.25) yields

(7.33) Ao = -
Ve, -D/oo ﬂ / / + ¥
ith
) ¥ q] 7/3
)ée = 7) .
(7.3%)

A rough approximation for / 1s

. e ~ ) U7
(7.35) Pl /3 -z

With (7.11), we obtain

/
, M —————
(7.36) Pt ~ AR (7Y

This expression resembles the asymptotic expression of Kirkwood
and Bethe (7.10). Por the actual calculstion, approximation
(7.35) 1s not necessary. It is almost as easy to use (7.33).
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7.5 The Intermediate Pressure Range. The relationships de-
rived in Chapter VII are suitable for large values of O, , i.e.,

for the high pressure range. Numerical calculations have shown
that 1t 1s difficult to extend this method to such pressures,
where the above discussed "low-pressure"” reclations become valid.
It is possible to bridge this gap by means of the "peak ap-
proximation”., A suitable method is described in reference [h].
There, two ordinary differential equations are given which
relate the shockwave peak pressure, time factor and shape
factor with distance. The time factor is given by

J /
(7.37) A= - 24 - —ﬁf—c‘{—[,,&ﬁpwfﬁ]

and the shape factor by

(7.38) d - L&

or,expressed in the magnitudes occurring in this report:

4 o ,,—‘%—/([se'ﬂ]y +¥NE - Ec‘?')f

dl—

(7:39) + (, )/ £, [ (w54 e p"+ 005~ %'t %")
(3—3}/0(4',+2}]

- & 6(7}; +l7£7, + 22, (#+2))
%ﬁ?([?:h’-]] +%)j

In these equations o, and ¢, sare reference values which cancel
in the process of the calculation. @, may be chosen as an
arbitrary distance, e.g., the shock radius at the end of the
high pressure range, and Co as the sound velocity of the
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undisturbed water. @07 and Q09 are derived and explained

in reference [h]l. (7.37)and (7.39) as well as the peak
pressure calculated &t the end of the high pressure range,
provide the initial conditions for the peak-approximation
method. The shape factor must now be estimsted as a function
of distance. This 1is not difficult, since this magnitude 1is
close to unity for moderate and low pressures. A function
starting at the calculated values in the high pressure region
and approaching unity is usually sufficiently accurate. Inte-
gration of the differential equations for peak pressure and
time factor given in reference [(h] makes it possible to obtain
3 for such low values of pressure that (7.33) becomes valid.
This determines the integration constant in (7.34). /43 can be
conveniently expressed in the terms of the functions P, ard
P), wnich occur in the peak-approximation theory:

- Pi = Pe r,n.' p. ""J‘
(7.40) fe e B52 | i g

This provides the equations for the calculation of the
shoikwave parameters, beginning at the extremely high pressures
r,cecurring shortly after the explosion down to the low pressures
of a nearly acoustic wave.
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Figure 1. Determination of 8 = T2 d%&

For each value of [° several values of @ are assumed,

suct as @ = +1, 0, -1, -2, etc. For each of these values of
B, n 1s calculated using equation 1.3 and 1n7, 1is plotted
versus 1n =8 . The correct @ 1is the slope of the solving

curve in ti18 ploct. The sclving curve 1s obtained by inter-
polation among the calculated data. Examples cf this data for
two values of R are shown at a and b in the atove sketch.
As a {irst approximation, a curve is drawn from tre known initial
value of W, at 2 =42 through the regions of intersections A
and B. T'e approximate curve 1s then ad justed at each £ ,
until the slope of the curve is equal to the interpolated value
of @ . This interpolation 18 readily accomplished with the
aid of a crossplot such as the one stown. For example, the
{nclination of tre solving curve at the poiut ¢ must be equal
to @L read from the 8 scale of the crossplot.
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LIST OF SYMBOLS

Abbreviations defined by (7.€) and (7.7).

.. Coefficients of the expansion of ¥
... Coefficients of the expansion of X

Sound velocity
Sound velocity of the undisturbed medium

.. Coefficients of the expansion of ¢

2.71828....

Internal energy

Abbreviation defined by (4.8)

Abbreviation defined by (4.13a)

Decay factor of shock front density (2.20)
Dissipated enthalpy increment

Enthalpy increment

Abbreviation defined by (4.9)

Decay factor of shockwave peak pressure (2.18)
Reduced internal energy (2.¢°
Abbreviations defined by (4.13)
Abbreviation defined by (4.9)

Decay factor of partial velocity behind shock
front (2.19)

= 3/(-1)

Abbreviations defined by (5.9)
Excess pressure

Shockwave peak pressure
Absolute pressure in the undisturbed medium
Abbreviation defined by (4.8)
Energy yield

Dissipated energy

Bubble energy

Shockwave energy

Radius

Entropy
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Time

Temperature

Lowest temperature of the system

Particle velocity

Particle velocity right behind shock front
Propagation velocity of shock front
Specific volume = ‘/4

- fﬁ‘fo)/po

- /%

o by, [l fCP-poljp)

. Alnys |l Sop-po)/ o)

Adiabatic exponent as defined by (2.4)
True adiabatic exponent; see (2.5)
Adisbatic exponent right behind the shock front

Adiabatic exponent at the center cf the
disturbance

Rankine-Hugoniot exponent
Roots of denominator in (4.11)

Coefficient of change of sound velocity with
pressure

Reduced energy

Total reduced energy of the sphere of disturbance
Reduced dissipated energy

Reduced shockwave energy

- (P-PP

Reduced radius

3.14159....

Density

Density right behind shock front

Density right behind shock front at the initial
condition (Taylor Solution)

Density of the undisturbed medium
Reduced particle velocity
Reduced density
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Reduced pressure

Reduced pre¢ssure at the center of the
disturbance
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